Quantitative Data Analysis

Summarizing Data: variables; simple statistics; effect statistics and statistical models; complex models.

Generalizing from Sample to Population: precision of estimate, confidence limits, statistical significance, p value, errors.

Will G Hopkins

Auckland University of Technology Auckland NZ

Reference: Hopkins WG (2002). Quantitative data analysis (Slideshow). Sportscience 6, sportsci.org/jour/0201/Quantitative_analysis.ppt (2046words)

Summarizing Data

- Data are a bunch of values of one or more variables.
- A variable is something that has different values.
 - Values can be numbers or names, depending on the variable:
 - Numeric, e.g. weight
 - · Counting, e.g. number of injuries
 - Ordinal, e.g. competitive level (values are numbers/names) • Nominal, e.g. sex (values are names
 - When values are numbers, visualize the distribution of all values in stem and leaf plots or in a frequency histogram.
 - · Can also use normal probability plots to visualize how well the values fit a normal distribution.
 - When values are names, visualize the frequency of each value with a pie chart or a just a list of values and frequencies.

- A statistic is a number summarizing a bunch of values.
 - Simple or univariate statistics summarize values of one variable.
 - Effect or outcome statistics summarize the relationship between values of two or more variables.
- Simple statistics for numeric variables...
 - Mean: the average
 - Standard deviation: the typical variation
 - Standard error of the mean: the typical variation in the mean with repeated sampling
 - Multiply by $\sqrt{(\text{sample size})}$ to convert to standard deviation.
 - Use these also for counting and ordinal variables.
 - Use median (middle value or 50th percentile) and quartiles (25th and 75th percentiles) for grossly non-normally distributed data.
 - Summarize these and other simple statistics visually with box and whisker plots.

- Simple statistics for nominal variables
- Frequencies, proportions, or odds.
 - Can also use these for ordinal variables.
- Effect statistics...
 - Derived from statistical model (equation) of the form Y (dependent) vs X (predictor or independent).
 - Depend on type of Y and X. Main ones:

Y	Х	Model/Test	Effect statistics		
numeric	numeric	regression	slope, intercept, correlation		
numeric	nominal	t test, ANOVA	mean difference		
nominal	nominal	chi-square	frequency difference or ratio		
nominal	numeric	categorical	frequency ratio per		

= average standard deviation of the two groups

female male

SAX

- - · Model or test:
 - linear regression
 - · Effect statistics: slope and intercept
 - = parameters
 - · Other statistics:
 - · typical or standard error of the estimate
 - = residual error

- More on expressing the magnitude of the effect
 - What often matters is the difference between means relative to the standard deviation:

- Fraction or multiple of a standard deviation is known as the effect-size statistic (or Cohen's "d").
- Cohen suggested thresholds for correlations and effect sizes.
- Hopkins agrees with the thresholds for correlations but suggests others for the effect size:

Correla Cohe Hopkin	tions n: 0 is: 0	0.1 0,1	0. 0.	.3 0 .3 0	.5 .5	0,7	0,9 1
	trivial		small	moderate	large	very	large !!!
Effect S Cohe Hopkin	Sizes n: 0 is: 0	0.2 0.2	0. 0.	.50 .61	.8 .2	2.0	4.0 x
• F	or stud	ies of	f athletic i	performanc	e percen	t differei	nces or

changes in the mean are better than Cohen effect sizes.

males

750

magnitude of effects (for measures of athletic performance).

· Odds ratio is appropriate for case-control designs. - calculated as (75/25)/(30/70) = 7.0

Model: extra predictor variable to "control for something" e.g. heart disease vs physical activity vs age

- Can't reduce to anything simpler.
- Model or test:
 - multiple linear regression or analysis of covariance (ANCOVA)
 - Equivalent to the effect of physical activity with everyone at the same age.
 - Reduction in the effect of physical activity on disease when age is included implies age is at least partly the reason or mechanism for the effect.
 - Same analysis gives the effect of age with everyone at same level of physical activity.
- Can use special analysis (mixed modeling) to include a mechanism variable in a repeated-measures model. See separate presentation at newstats.org.

- Problem: some models don't fit uniformly for different subjects
 - That is, between- or within-subject standard deviations differ between some subjects.
 - Equivalently, the residuals are non-uniform (have different standard deviations for different subjects).
 - Determine by examining standard deviations or plots of residuals vs predicteds.
 - Non-uniformity makes p values and confidence limits wrong.
 - How to fix...
 - Use unpaired t test for groups with unequal variances, or...
 - Try taking log of dependent variable before analyzing, or...
 - Find some other transformation. As a last resort...
 - Use rank transformation: convert dependent variable to ranks before analyzing (= non-parametric analysis–same as Wilcoxon, Kruskal-Wallis and other tests).

Generalizing from a Sample to a Population

- You study a sample to find out about the population.
- The value of a statistic for a sample is only an estimate of the true (population) value.
- Express precision or uncertainty in true value using 95% confidence limits.
 - Confidence limits represent likely range of the true value.
 - They do NOT represent a range of values in different subjects.
 - There's a 5% chance the true value is outside the 95% confidence interval: the Type 0 error rate.
- Interpret the observed value and the confidence limits as clinically or practically beneficial, trivial, or harmful.
 - Even better, work out the probability that the effect is clinically or practically beneficial/trivial/harmful. See sportsci.org.

- Statistical significance is an old-fashioned way of generalizing, based on testing whether the true value could be zero or null.
 - Assume the null hypothesis: that the true value is zero (null).
 - If your observed value falls in a region of extreme values that would occur only 5% of the time, you reject the null hypothesis.
 - That is, you decide that the true value is unlikely to be zero; you can state that the result is statistically significant at the 5% level.
 - If the observed value does not fall in the 5% unlikely region, most people mistakenly accept the null hypothesis: they conclude that the true value is zero or null!
 - The p value helps you decide whether your result falls in the unlikely region.
 - If p<0.05, your result is in the unlikely region.

- One meaning of the p value: the probability of a more extreme observed value (positive or negative) when true value is zero.
- Better meaning of the p value: if you observe a positive effect, 1 - p/2 is the chance the true value is positive, and p/2 is the chance the true value is negative. Ditto for a negative effect.
 - Example: you observe a 1.5% enhancement of performance (p=0.08). Therefore there is a 96% chance that the true effect is any "enhancement" and a 4% chance that the true effect is any "impairment".
 - This interpretation does not take into account trivial enhancements and impairments.
- Therefore, if you must use p values, show exact values, not p<0.05 or p>0.05.
 - Meta-analysts also need the exact p value (or confidence limits).

- If the true value is zero, there's a 5% chance of getting statistical significance: the Type I error rate, or rate of false positives or false alarms.
- There's also a chance that the smallest worthwhile true value will produce an observed value that is not statistically significant: the Type II error rate, or rate of false negatives or failed alarms.
 - In the old-fashioned approach to research design, you are supposed to have enough subjects to make a Type II error rate of 20%: that is, your study is supposed to have a power of 80% to detect the smallest worthwhile effect.
- If you look at lots of effects in a study, there's an increased chance being wrong about at least one of them.
 - Old-fashioned statisticians like to control this inflation of the Type I error rate within an ANOVA to make sure the increased chance is kept to 5%. This approach is misguided.

- The standard error of the mean (typical variation in the mean from sample to sample) can convey statistical significance.
 - Non-overlap of the error bars of two groups implies a statistically significant difference, but only for groups of equal size (e.g. males vs females).
 - In particular, non-overlap does NOT convey statistical significance in experiments:

- In summary
 - If you must use statistical significance, show exact p values.
 - Better still, show confidence limits instead.
 - NEVER show the standard error of the mean!
 - Show the usual between-subject standard deviation to convey the spread between subjects.
 - In population studies, this standard deviation helps convey magnitude of differences or changes in the mean.
 - In interventions, show also the within-subject standard deviation (the typical error) to convey precision of measurement.
 - In athlete studies, this standard deviation helps convey magnitude of differences or changes in mean performance.