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Quantitative Data Analysis
Summarizing Data: variables; simple statistics; effect statistics 

and statistical models; complex models.
Generalizing from Sample to Population: precision of estimate, 

confidence limits, statistical significance, p value, errors.

Reference:  Hopkins WG (2002).  Quantitative data analysis (Slideshow).  
Sportscience 6, sportsci.org/jour/0201/Quantitative_analysis.ppt (2046words)

Summarizing Data

• Data are a bunch of values of one or more variables.
• A variable is something that has different values.

• Values can be numbers or names, depending on the variable:
• Numeric, e.g. weight
• Counting, e.g. number of injuries
• Ordinal, e.g. competitive level (values are numbers/names)
• Nominal, e.g. sex (values are names

• When values are numbers,  visualize the distribution of all 
values in stem and leaf plots or in a frequency histogram.
• Can also use normal probability plots to visualize how well 

the values fit a normal distribution.
• When values are names, visualize the frequency of each value 

with a pie chart or a just a list of values and frequencies.

• A statistic is a number summarizing a bunch of values.
• Simple or univariate statistics summarize values of one variable.
• Effect or outcome statistics summarize the relationship between 

values of two or more variables.
• Simple statistics for numeric variables…

• Mean: the average
• Standard deviation: the typical variation
• Standard error of the mean: the typical variation in the mean with 

repeated sampling
• Multiply by √(sample size) to convert to standard deviation.

• Use these also for counting and ordinal variables.
• Use median (middle value or 50th percentile) and quartiles (25th 

and 75th percentiles) for grossly non-normally distributed data.
• Summarize these and other simple statistics visually with box 

and whisker plots.

• Simple statistics for nominal variables
• Frequencies, proportions, or odds.
• Can also use these for ordinal variables.

• Effect statistics…
• Derived from statistical model (equation) of the form

Y (dependent) vs X (predictor or independent).
• Depend on type of Y and X .  Main ones:

Y X Effect statisticsModel/Test
numeric numeric slope, intercept, correlation regression
numeric nominal
nominal nominal
nominal numeric

mean difference
frequency difference or ratio
frequency ratio per… 

t test, ANOVA 
chi-square
categorical

• Model: numeric vs numeric
e.g. body fat vs sum of skinfolds
• Model or test: 

linear regression
• Effect statistics: 

• slope and intercept
= parameters

• correlation coefficient or variance explained (= 100·correlation2)
= measures of goodness of fit

• Other statistics:
• typical or standard error of the estimate

= residual error
= best measure of validity (with criterion variable on the Y axis)

sum skinfolds (mm)sum skinfolds (mm)sum skinfolds (mm)

body fat
(%BM)

body fatbody fat
(%BM)(%BM)

• Model: numeric vs nominal
e.g. strength vs sex
• Model or test: 

• t test (2 groups)
• 1-way ANOVA (>2 groups)

• Effect statistics: 
• difference between means

expressed as raw difference, percent difference, or fraction of 
the root mean square error (Cohen's effect-size statistic) 

• variance explained or better √(variance explained/100)
= measures of goodness of fit

• Other statistics:
• root mean square error

= average standard deviation of the two groups

femalefemale malemale

strengthstrength

sexsex
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• More on expressing the magnitude of the effect
• What often matters is the difference between means relative to 

the standard deviation:

strength

femalesfemales

malesmales

Trivial effect:

strength

femalesfemales

malesmales

Very large effect:

• Fraction or multiple of a standard deviation is known as the
effect-size statistic (or Cohen's "d").

• Cohen suggested thresholds for correlations and effect sizes.
• Hopkins agrees with the thresholds for correlations but 

suggests others for the effect size:

trivialtrivial smallsmall moderatemoderate largelarge very largevery large !!!!!!

0.10.1 0.30.3 0.50.5 0.70.700 0.90.9 11Hopkins:Hopkins:

Correlations
Cohen:Cohen: 0.10.1 0.30.3 0.50.500

0.20.2Hopkins:Hopkins: 0.60.6 1.21.2 2.02.000 4.04.0 ∞∞

Effect Sizes
0.20.2Cohen:Cohen: 0.50.5 0.80.800

• For studies of athletic performance, percent differences or 
changes in the mean are better than Cohen effect sizes.

• Model: numeric vs nominal
(repeated measures)

e.g. strength vs trial
• Model or test: 

• paired t test (2 trials)
• repeated-measures ANOVA with

one within-subject factor (>2 trials)
• Effect statistics: 

• change in mean expressed as raw change, percent change, or 
fraction of the pre standard deviation 

• Other statistics:
• within-subject standard deviation (not visible on above plot)

= typical error: conveys error of measurement
– useful to gauge reliability, individual responses, and 

magnitude of effects (for measures of athletic performance).

pre post

strengthstrength

trial

• Model: nominal vs nominal
e.g. sport vs sex
• Model or test: 

• chi-squared test or 
contingency table

• Effect statistics:
• Relative frequencies, expressed 

as a difference in frequencies, 
ratio of frequencies (relative risk), 
or ratio of odds (odds ratio)

• Relative risk is appropriate for cross-sectional or prospective 
designs.

– risk of having rugby disease for males relative to females is 
(75/100)/(30/100) = 2.5

• Odds ratio is appropriate for case-control designs.
– calculated as (75/25)/(30/70) = 7.0

femalesfemales malesmales

30%30%
75%75%

rugby yesrugby yes
rugby norugby no

• Model: nominal vs numeric
e.g. heart disease vs age
• Model or test: 

• categorical modeling
• Effect statistics:

• relative risk or odds ratio
per unit of the numeric variable
(e.g., 2.3 per decade)

• Model: ordinal or counts vs whatever
• Can sometimes be analyzed as numeric variables using 

regression or t tests
• Otherwise logistic regression or generalized linear modeling

• Complex models
• Most reducible to t tests, regression, or relative frequencies.
• Example…

age (y)age (y)age (y)

heart
disease

(%)

heartheart
diseasedisease

(%)(%)
000

100100100

303030 505050 707070

• Model: controlled trial
(numeric vs 2 nominals)

e.g. strength vs trial vs group
• Model or test: 

• unpaired t test of 
change scores (2 trials, 2 groups)

• repeated-measures ANOVA with
within- and between-subject factors 
(>2 trials or groups)

• Note: use line diagram, not bar graph, for repeated measures.
• Effect statistics: 

• difference in change in mean expressed as raw difference, 
percent difference, or fraction of the pre standard deviation 

• Other statistics:
• standard deviation representing individual responses (derived 

from within-subject standard deviations in the two groups)

pre post

strengthstrength

trial

drugdrug

placeboplacebo
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• Model: extra predictor variable to "control for something"
e.g. heart disease vs physical activity vs age
• Can't reduce to anything simpler.
• Model or test:

• multiple linear regression or analysis of covariance (ANCOVA)
• Equivalent to the effect of physical activity with everyone at 

the same age.
• Reduction in the effect of physical activity on disease when 

age is included implies age is at least partly the reason or
mechanism for the effect.

• Same analysis gives the effect of age with everyone at same 
level of physical activity.

• Can use special analysis (mixed modeling) to include a 
mechanism variable in a repeated-measures model.  See 
separate presentation at newstats.org.

• Problem: some models don't fit uniformly for different subjects 
• That is, between- or within-subject standard deviations differ

between some subjects.
• Equivalently, the residuals are non-uniform (have different 

standard deviations for different subjects).
• Determine by examining standard deviations or plots of 

residuals vs predicteds.
• Non-uniformity makes p values and confidence limits wrong.
• How to fix…

• Use unpaired t test for groups with unequal variances, or…
• Try taking log of dependent variable before analyzing, or…
• Find some other transformation.  As a last resort…
• Use rank transformation:  convert dependent variable to 

ranks before analyzing (= non-parametric analysis–same as 
Wilcoxon, Kruskal-Wallis and other tests).

Generalizing from a Sample to a Population

• You study a sample to find out about the population.
• The value of a statistic for a sample is only an estimate of the 

true (population) value.
• Express precision or uncertainty in true value using 95% 

confidence limits.
• Confidence limits represent likely range of the true value.
• They do NOT represent a range of values in different subjects.
• There's a 5% chance the true value is outside the 95% 

confidence interval: the Type 0 error rate.
• Interpret the observed value and the confidence limits as 

clinically or practically beneficial, trivial, or harmful.
• Even better, work out the probability that the effect is clinically or 

practically beneficial/trivial/harmful. See sportsci.org.

• Statistical significance is an old-fashioned way of 
generalizing, based on testing whether the true value could 
be zero or null.
• Assume the null hypothesis: that the true value is zero (null).
• If your observed value falls in a region of extreme values that 

would occur only 5% of the time, you reject the null hypothesis.
• That is, you decide that the true value is unlikely to be zero; 

you can state that the result is statistically significant at the 5% 
level.

• If the observed value does not fall in the 5% unlikely region, 
most people mistakenly accept the null hypothesis: they 
conclude that the true value is zero or null!

• The p value helps you decide whether your result falls in the 
unlikely region.  
• If p<0.05, your result is in the unlikely region.  

• One meaning of the p value: the probability of a more extreme 
observed value (positive or negative) when true value is zero.

• Better meaning of the p value: if you observe a positive effect, 
1 - p/2 is the chance the true value is positive, and p/2 is the 
chance the true value is negative.  Ditto for a negative effect.
• Example:  you observe a 1.5% enhancement of performance 

(p=0.08).  Therefore there is a 96% chance that the true effect 
is any "enhancement" and a 4% chance that the true effect is 
any "impairment".

• This interpretation does not take into account trivial 
enhancements and impairments.

• Therefore, if you must use p values, show exact values, not 
p<0.05 or p>0.05.
• Meta-analysts also need the exact p value (or confidence 

limits).

• If the true value is zero, there's a 5% chance of getting 
statistical significance: the Type I error rate, or rate of false 
positives or false alarms.

• There's also a chance that the smallest worthwhile true value 
will produce an observed value that is not statistically 
significant: the Type II error rate, or rate of false negatives or 
failed alarms.
• In the old-fashioned approach to research design, you are 

supposed to have enough subjects to make a Type II error 
rate of 20%:  that is, your study is supposed to have a power
of 80% to detect the smallest worthwhile effect.

• If you look at lots of effects in a study, there's an increased 
chance being wrong about at least one of them.
• Old-fashioned statisticians like to control this inflation of 

the Type I error rate within an ANOVA to make sure the 
increased chance is kept to 5%. This approach is misguided.
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• The standard error of the mean (typical variation in the mean 
from sample to sample) can convey statistical significance. 
• Non-overlap of the error bars of two groups implies a 

statistically significant difference, but only for groups of equal 
size (e.g. males vs females).

• In particular, non-overlap does NOT convey statistical 
significance in experiments:

what-
ever

postpre

High reliability
p = 0.003

postpre

Mean ± SEM 
in both cases

postpre

Low reliability
p = 0.2

• In summary
• If you must use statistical significance, show exact p values.
• Better still, show confidence limits instead.
• NEVER show the standard error of the mean!
• Show the usual between-subject standard deviation to convey 

the spread between subjects.
• In population studies, this standard deviation helps convey 

magnitude of differences or changes in the mean. 
• In interventions, show also the within-subject standard deviation

(the typical error)  to convey precision of measurement.
• In athlete studies, this standard deviation helps convey 

magnitude of differences or changes in mean performance. 


