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The article and associated spreadsheet present a compelling argument for the use of 
ordinary least-squares regression analysis in calibration and validity studies. This 
communication was prompted by a spirited debate at the 2004 ACSM Annual Meeting 
and subsequently via electronic mail. It is worth stating that the analysis and 
interpretation of the study scenarios presented is one of the most controversial and often 
impenetrable topics in the measurement and biostatistics literature.  The article discusses 
the most common scenario of two methods of measurement of some underlying quantity, 
with no replicate measurements. Several authors, including Bland and Altman (1999) and 
Dunn (2004) have argued that this design is weak as the resulting data are difficult to 
interpret with any confidence. These authors maintain that repeated measurements of 
each of the two methods should ideally be incorporated into the analysis, to take account 
for the influence of varying degrees of measurement error in both methods. This issue has 
implications for the potential artifactual proportional bias in Bland-Altman plots.  

In the colloquium with Greg Atkinson that Will Hopkins refers to, we argued that the bias 
in a subsequent Bland-Altman plot was due, in part, to using least-squares regression at 
the calibration phase. This, we suggested, could be due to the fact that one of the key 
assumptions of least-squares had been violated. In every statistical text and related article 
I have ever come across it is stated that the fitting of a straight line through least-squares 
assumes that there is only error in the Y variable (see, for example, Draper and Smith, 
1998, for a detailed treatment). The X variable is assumed to be fixed by the 
experimenter or measured without error. This is because the squared deviations that are 
minimised are the residuals in the vertical (Y) direction only.  Fitting by least-squares in 
situations where there is measurement error in X as well as Y reduces the slope of the 
line and also causes the intercept to deviate from zero. But as Will's analysis shows, using 
this line to calibrate X produces unbiased estimates of Y.  Errors in X and Y contribute to 
the SEE from the least-squares model, of course, and the bigger the SEE the bigger the 
bias in a subsequent Bland-Altman plot. This can be demonstrated by altering the 
numbers in blue in the associated spreadsheet to reflect the preceding discussion. For 
instance, making the range large relative to the errors in X and Y removes the bias in the 
Bland-Altman plot. I used a mean of 100 and an SD of 30 for the true values, and errors 
of 5 and 1 for Y and X variables, respectively. When, however, the X or Y error is large 
relative to the range, the bias appears in the Bland-Altman plot.   

At the ACSM colloquium, Greg Atkinson and I suggested that the bias in the Bland-
Altman plot is not apparent if the original calibration was conducted via least-products 
regression. However, I acknowledge that there are other problems with this technique. As 
Will Hopkins argues, in the situations in which there is a known criterion or gold-
standard, it seems inappropriate to "average" the two methods in this way. Also, least-
products regression can lead to inflated SEEs and estimates that do not tend to their true 
values an N approaches infinity (Draper and Smith, 1998). Least-products may be useful 
in situations in which two methods are being compared and neither may be regarded as 
the gold standard. The debate then surrounds the prevalence of one measurement scenario 
(established criterion) versus the other (no gold standard measurement). John Ludbrook 
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and to a lesser extent Bland and Altman maintain that the latter is more common, whereas 
Will Hopkins argues that there is usually a criterion–otherwise, why would researchers 
conduct a validity study? Previously, I have expressed the view that much of the debate 
about appropriate analysis strategies is confused by various researchers’ failing to 
distinguish between calibration/conversion problems, method comparison problems, and 
gold-standard method-comparison problems. It seems clear that limits of agreement and 
least-products regression may be suited to method comparison problems where there is 
no assumed gold-standard. In calibration/conversion problems where "Y" is the criterion 
and "X" is the cheap, practical alternative, ordinary regression techniques may suffice, as 
Will Hopkins suggests. However, if these are conducted using least-squares, and a 
subsequent validity analysis is conducted via Bland-Altman plots, an apparent 
proportional bias is inevitable unless the X-range is very large relative to errors in X and 
Y (or small error in Y, and zero X-error – as per least-squares assumptions). My take, 
currently, is that least-squares regression may be used at the validity stage, as Will 
Hopkins suggests, especially when the measurement scenario involves a gold-standard. I 
do not believe that Bland and Altman would disagree with this position. Indeed, as 
pointed out and illustrated at the aforementioned ACSM colloquium, these authors have 
recently proposed that regression may be used on the original, raw variables to provide 
something akin to the limits of agreement (Bland and Altman, 2003).  At the colloquium, 
Greg and I proposed 90% limits for the prediction error from a linear regression for an 
individual at the mean of the distribution (approximately 1.65*SEE). As Will Hopkins 
has suggested previously, however, 68% limits for the SEE may be more meaningful for 
clinical or practical significance.  

Will Hopkins has contributed an illuminating addition to the ongoing analysis debate 
with section and spreadsheet update on the application of Bland-Altman plots to 
measures that have not been calibrated through least-squares, and that differ only in 
random error. The suggestion is that the bias is still apparent, and by implication the bias 
is, therefore, is not an artefact of least-squares at the calibration stage as no calibration 
occurred. However, if one experiments with the range of the true values as defined by the 
mean and SD, and makes the errors in each of the two methods small relative to the range 
(even with one large relative to the other), it seems that the bias in the Bland-Altman plot 
reduces substantially or disappears, as in my previous example. This suggests that this 
bias, too, is related to the magnitude of the errors relative to the range of the data.    

In summary, I believe that with this article and spreadsheet Will Hopkins has made an 
excellent contribution to the literature that should stimulate further debate. I believe that 
slavish adoption to any measurement technique, including limits or agreement, should be 
discouraged. I would urge researchers where possible to conduct and incorporate a 
thorough analysis of measurement error into their studies, and to identify the 
measurement scenario as method comparison, comparison against a gold standard, and/ 
or calibration/ conversion. As Will Hopkins has proposed, recalibration of instruments 
using least-squares regression at the validity phase can be useful. Dunn (2004) echoes 
that Y values can be re-scaled at the validity stage prior to additional analysis. I am not 
quite ready to state that Bland-Altman plots and limits of agreement are totally redundant, 
but I agree that standard regression techniques can be employed to analyze calibration, 
conversion, and validity studies appropriately, especially in situations in which there is a 
known or assumed criterion or gold-standard, and when measurement error in X and Y is 
small relative to the range of the data. 

References 
Bland JM, Altman DG (1999). Measuring agreement in method comparison studies. 

Statistical Methods in Medical Research 8, 135-160  



49 
Bland JM, Altman DG (2003). Applying the right statistics. Ultrasound in Obstetrics and 

Gynecology 22, 85-93 
Dunn G (2004). Statistical Evaluation of Measurement Errors: Design and Analysis of 

Reliability Studies, 2nd ed. London: Arnold 
Draper NR, Smith H (1998). Applied Regression Analysis, 3rd ed. New York: Wiley 
Ludbrook J (1997). Comparing methods of measurement. Clinical and Experimental 

Pharmacology and Physiology 24, 193-203   

Back to article/homepage 
Published Nov 2004 
©2004 

 

 


