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An instrument that has been calibrated against a criterion measure with a 
sample of subjects is sometimes checked against the criterion in a validity 
study with another sample.  In a spreadsheet-based simulation of such 
calibration and validity studies, a Bland-Altman plot of difference vs mean 
values for the instrument and criterion shows a systematic proportional bias 
in the instrument's readings, even though none is present.  This artifactual 
bias arises in a Bland-Altman plot of any measures with substantial random 
error. In contrast, a regression analysis of the criterion vs the instrument 
shows no bias.  The regression analysis also provides complete statistics for 
recalibrating the instrument, if bias develops or if random error changes since 
the last calibration.  The Bland-Altman analysis of validity should therefore be 
abandoned in favor of regression.  
KEYWORDS: calibration, method comparison, random error, systematic 
error, standard error of the estimate. 
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For comparison of one method with another, Bland and Altman (1986) advised 
researchers to use the two methods on a group of subjects, then plot the difference scores 
against the mean for each subject.  Such plots have become a standard accessory in 
validity or method-comparison studies, and their original paper has been cited over 9000 
times.  In this article I use a spreadsheet to show that the plots can lead to an incorrect 
conclusion about the validity of a measure, and I urge researchers to use regression when 
comparing measures. 

Bland and Altman devised their plot to steer researchers away from what they considered 
was misuse of the correlation coefficient as a measure of validity. The misuse amounted 
to regarding the correlation coefficient as the most important or even the only measure of 
the relationship between two measures.  The problem with the correlation coefficient is 
that the two measures might be highly correlated, yet there could be substantial 
differences in the two measures across their range of values.  An appropriate comparison 
of the two measures needs to highlight such differences—hence the Bland-Altman plot, 
which explicitly shows differences between the two measures (on the Y axis) over their 
range (on the X axis).  

Unfortunately the Bland-Altman plot has a fatal flaw: it indicates incorrectly that there 
are systematic differences or bias in the relationship between two measures, when one 
has been calibrated against the other.  Whether this flaw has been noted previously in any 
of the 9000+ citations to Bland and Altman would be hard to determine.  There was no 
mention of it either in the most recent re-statement of their method (Bland and Altman, 
2003) or in a recent critique focused on bias (Ludbrook, 2002).  I became aware of the 
problem at a colloquium on measurement presented by Greg Atkinson and Alan 
Batterham at the 2004 annual meeting of the American College of Sports Medicine in 
Indianapolis.  I subsequently devised a spreadsheet to illustrate the flaw and to show how 
the regression approach to method comparison is superior to the Bland-Altman approach.  
I presented the spreadsheet for discussion on the Sportscience mailing list in June 2004 
(see Regression vs Bland-Altman and the replies).  There was little engagement with the 



 

 

43 
issues in the ensuing discussion, so for this article I have improved the spreadsheet and 
further developed the arguments, in the hope that researchers will take note. 

The spreadsheet shows randomly generated data simulating a not uncommon scenario: 
calibration of an instrument against some standard or criterion, followed by a method-
comparison study of the instrument against the criterion.  For the calibration phase of the 
simulation, imagine that a manufacturer makes a new high-tech instrument to provide a 
practical measure of something like body fat, blood pressure, or transdermally assayed 
components of plasma.  The instrument measures a biophysical parameter such as 
absorbance ("Practical X" in the spreadsheet) that is highly correlated with the variable of 
interest (the concentration of some substance in plasma, say), although it may not be in 
anything like the same units.  So the manufacturer uses the instrument on a large sample 
of subjects and does a criterion measurement of the variable ("Criterion Y") on the same 
sample.  The manufacturer then fits a prediction equation to make Practical X predict 
Criterion Y as closely as possible, and finally builds the equation into the instrument.  
The instrument therefore produces a calibrated practical measure ("Practical Y") that is 
outwardly like Criterion Y but will almost certainly have more error than the criterion.   

For the simulated method-comparison or 
validity phase, imagine that a researcher wants 
to use the instrument for a large-scale study.  
The researcher prudently decides to check the 
instrument against the criterion by measuring a 
sample of subjects with the instrument and with 
the criterion.  Figure 1 shows the first stage of 
the analysis: a plot of raw values provided by 
the instrument and the criterion for 400 
subjects.  To generate these data, I made 
arbitrary choices for constants and errors in the 
manufacturer's calibration phase, but the 
conclusions about bias that I am about to make 
are independent of these choices.  The 
conclusions are also independent of the sample 
size. I chose 400 to make variation in derived 
statistics from sample to sample negligible.  In 
any real calibration and validity study, samples 
of 400 would be wasteful. 

Note that the slope of the line is close to unity, 
and the intercept of the line is close to zero.  In 
fact, the expected values of these parameters are 
exactly 1 and 0, and they differ from their expected values only because of sampling 
variation.  To demonstrate this variation, download the spreadsheet, open it, then save it 
by hitting the Control and "S" key. The spreadsheet updates all the randomly generated 
numbers with new values.  In doing so, the spreadsheet will perform the manufacturer's 
calibration study with a new sample of 400 subjects, then perform the validity study with 
another new sample of 400 subjects.  The slope and intercept vary randomly around 1 and 
0 respectively with every save.  A value of 1 for the slope and 0 for the intercept implies 
that the practical measure is unbiased.  

Measures of bias are only one aspect of a validity study.  Equally important is the nature 
of the random error in measurements provided by the instrument.  This error is apparent 
in the scatter of points about the line of identity in Figure 1. The magnitude of the error is 
usually calculated as the standard error of the estimate: the standard deviation of the 
vertical distance of each point from the line.  The standard error of the estimate represents 

Figure 1. First stage of analysis of a 
validity study: a plot of raw values 
provided by an instrument (Practical 
Y, Yprac) and a criterion measure 
(Criterion Y, Ycrit), to check for bias. 
The regression line and its equation 
are shown. Standard error of estimate 
= 7.1. 
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the typical magnitude of the deviation, error or difference (plus or minus) between the 
instrument's measurement and the criterion measurement. The manufacturer should 
supply the value of this error from the calibration study.  The researcher will get the same 
value, apart from random sampling variation, in the validity study. 

It is important to understand that the standard error 
of the estimate in the calibration or validity study 
is derived from all the subjects and therefore ought 
to apply to all subjects.  In the second stage of the 
analysis, the researcher checks that the error is 
indeed similar for all subjects, by inspecting a plot 
of "residuals vs predicteds", as shown in Figure 2.  
The residuals are the vertical distances between 
the observed values and the line in Figure 1 (the 
standard error of the estimate is the standard 
deviation of the residuals).  The predicteds are the 
corresponding Y values on the line.  A plot of 
residuals vs predicteds provides another and better 
view of the scatter of points about the line.  The 
researcher should examine the scatter for so-called 
heteroscedasticity (non-uniformity); for example, 
if there is more scatter at the high end of predicted 
values, the standard error of the estimate will be 
an underestimate of the error for such subjects, 
and the standard error must therefore be an 
overestimate for subjects with lower values.  Curvature in the scatter is another kind of 
non-uniformity that amounts to non-linear bias; it would indicate that non-linearity had 
not been accounted for properly in calibration or that it had crept in since manufacture. 
There are procedures for investigating the extent of non-uniformity, but I will not deal 
with those here.  Note, however, that the regression line in the residuals-predicteds plot 
has nothing to do with bias:  it always has a slope of 0 and an intercept of 0, even when 
the regression line of the raw data (Figure 1) indicates that bias is present.  With real data 
there would be no point in plotting the regression line on the residuals-predicteds plot. 

Although the residuals vs predicteds plot does not 
address the issue of bias, I introduced it not only 
because of its importance in checking for non-
uniformity of error, but also because of its 
similarity to the Bland-Altman plot, which is 
shown in Figure 3.  The plot can be used to check 
for non-uniformity of error, but more to the point 
of this article, a systematic trend in the values of 
the difference scores for different values of the 
mean score is supposed to indicate bias.  In Figure 
3 the trend line has a non-zero slope, which 
indicates so-called proportional bias.  (In these 
simulations the trend line passes through the mean 
of the difference scores, which has an expected 
value of zero, so there is no so-called fixed bias.) 
Whether the bias is substantial is an issue I won't 
deal with here. The important point is that anyone 
checking this instrument would conclude that it 
had not been calibrated correctly or that the 
subjects in the validity study must somehow be 

Figure 2. Second stage of a validity 
analysis: a plot of residuals vs 
predicteds, to check for non-
uniformity of error. The regression 
line and its equation are shown. 
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Figure 3. Bland-Altman plot of 
differences vs means for a criterion 
(Ycrit) and practical (Yprac) 
variable, to check for bias and non-
uniformity of error. The regression 
line and its equation are shown. 
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45 
different from those the manufacturer used to calibrate the instrument.  Either conclusion 
would be wrong.  There is nothing wrong with the instrument or the subjects.  The 
problem is the Bland-Altman plot.  

A regression analysis gives the right answer: there is no bias.  Of course, if bias were 
present, either because the instrument had been mis-calibrated or because calibration had 
drifted since manufacture, the regression equation for the raw values would correctly 
estimate its extent.  The regression equation would also represent the transformation for 
re-calibrating the instrument to make it unbiased.  Finally, the standard error of the 
estimate would be the random error in the re-calibrated readings, and could be compared 
with the manufacturer's value to check on whether the instrument had become more 
"noisy" since manufacture.  (All of these statistics should be interpreted in conjunction 
with their uncertainty, represented by confidence limits, and with the smallest clinically 
or practically important value of the measure.) A Bland-Altman analysis provides little of 
this valuable information, and what it does provide can obviously be misleading. 

Where does the artifactual positive bias in the Bland-Altman plot come from?  Or to put 
it another way, why is it that Ycrit-Yprac tends to be positive for the larger values of 
(Ycrit+Yprac)/2 and negative for the smaller values?  According to Figure 1, the value 
produced by the instrument (Yprac) is an unbiased estimate of the criterion value (Ycrit).  
It follows that, for any given observed value of Yprac, Ycrit-Yprac>0 half the time and 
Ycrit-Yprac<0 half the time.  But when Ycrit-Yprac>0, Ycrit>Yprac, so (Ycrit+Yprac)/2 
will be greater than when Ycrit-Yprac<0.  Therefore points on the Bland-Altman plot will 
have a positive slope for any given Yprac, and over the range of values of Yprac there 
will therefore be a positive trend.  A large range for Yprac will tend to smear out the 
trend, which fits with the finding that the artifactual bias gets smaller as the standard error 
of the estimate gets smaller relative to the true between-subject standard deviation. 

In this article the focus has been on bias in a Bland-Altman plot of readings from an 
instrument when it is checked against the criterion that was used to calibrate it.  The bias 
is an artifact of calibration of an instrument that has substantial random error. The 
instrument is therefore likely to show bias in a Bland-Altman plot if it is checked against 
other measures, criterion or otherwise.  At least part of the bias will be artifactual, but the 
researcher will not know how much is artifact and how much is real. The Bland-Altman 
plot therefore should not be used to make conclusions about bias with any calibrated 
instrument.   

Those who are determined to defend the Bland-Altman approach have to find reasons to 
abandon regression, or more specifically least-squares regression, when calibrating the 
instrument.  Ludbrook (2002) claimed that the presence of error in the practical variable 
X violated some kind of statistical assumption, but he did not explain the apparent 
violation or explain why least-squares regression was therefore inappropriate.  My 
spreadsheet shows that the presence of random error in both Practical X and Criterion Y 
does not lead to biased prediction of Criterion Y by the Practical Y derived from the 
calibration.  His next assertion, that "when two methods are compared, it is usual that 
neither can be regarded as a benchmark", is not true, in my experience: most if not all 
validity studies I have encountered in biomedical sciences include a measure regarded as 
the criterion.  Researchers do not undertake validity studies without one.  Ludbrook 
apparently wanted to put most measures on an equal footing to support his approach of 
least-products regression, a method of fitting a line that minimizes residuals in the 
vertical and horizontal direction. This approach apparently eliminates the bias problem in 
Bland-Altman plots, according to Atkinson and Batterham in their colloquium.  But least-
products regression is tantamount to giving equal weight to a practical and a criterion 
measure, which is unacceptable.  



 

 

46 
Bias in Bland-Altman plots is not restricted to calibrated instruments: it can arise as an 
artifact of random error between measures that have not been calibrated.  Consider two 
measures, Y1 and Y2, that both measure some true criterion value Y without bias, and 
that differ only in the amount of random error added to each.  Suppose the standard 
deviations of the error for Y1 and Y2 are 1 and 2 units respectively, and suppose the 
standard deviation for Y is 5 units.  The three pairwise Bland-Altman plots of these three 
measures all show bias!  An example is included on a separate page in the spreadsheet.  
Evidently the Bland-Altman plot fails to correctly diagnose lack of bias even in the 
simple case of measures differing only in the extent of random error.  On the other hand, 
it is easy to show with the main page of the spreadsheet that a regression analysis with 
Y1 as the criterion measure (Criterion Y) and Y2 as the practical measure (Practical X) 
does not result in bias in the prediction of either Y1 or more importantly in the prediction 
of the true values of Y (See Step 6a and 6b in the spreadsheet.) 

Bland and Altman had praiseworthy intentions when they devised new ways of dealing 
with measurement error.  However, I think they and their followers have failed to 
consider that regression has more to offer than just a correlation coefficient.  Previously 
my criticisms have focused on problems with limits of agreement, the measure of random 
error that Bland and Altman promoted in place of the standard error of the estimate and 
its equivalent in reliability studies, the standard error of measurement.  (See A New View 
of Statistics and Hopkins, 2000.)   The fact that the Bland-Altman approach is also 
deficient for the analysis of bias in validity studies finishes the debate as far as I am 
concerned.  Measurement error must be analyzed with regression. 

I am grateful to Alan Batterham for his well-researched and generally supportive though 
cautious commentary. Naturally, I don't share his view that Bland-Altman plots and least-
products regression might be useful in some method-comparison studies.  What's needed 
for a comparison of two or more measures is a generic approach more powerful even than 
regression to model the relationship and error structure of each measure with a latent 
variable representing the true value.  Alan and I have actually done some preliminary 
promising work towards this goal using mixed modeling and structural equation 
modeling. 

To view the spreadsheet within Excel rather than within the browser window, right-click 
on this link, select Save Target As…, save to your computer anywhere, then open. 
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